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1. Discrete-Time Signals and Systems

• signal classification -> signals to be applied in digital filter 
theory within our course,

l di i i l• some elementary discrete-time signals,
• discrete-time systems: definition, basic properties review, 

discrete-time system classification, input-output model ofdiscrete time system classification, input output model of 
discrete-time systems -> system to be applied in digital filter 
theory within our course,

i di i i i i d i i i• Linear discrete-time time-invariant system description in 
time-, frequency- and transform-domain.
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1.1. Basic Definitions
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1.1.1. Discrete and Digital Signals1.1.1. Discrete and Digital Signals 
1.1.1.1. Basic Definitions

Signals may be classified into four categories depending 
on the characteristics of the time-variable and values 
th t kthey can take: 

• continuous-time signals (analogue signals)continuous time signals (analogue signals),
• discrete-time signals,
• continuous-valued signals,
• discrete-valued signals.
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Continuous-time (analogue) signals:

Time: defined for every value of time t R∈Time: defined for every value of time         ,
Descriptions: functions of a continuous variable t: ,
Notes:            they take on values in the continuous            

( )f t
t R∈

y
interval                                              .            ( ) ( , ) ,f t a b for a b∈ − → ∞

Note: ( )f t C∈
( )

( , ) ( , )
f t j

a b and a b
σ ω

σ ω
= +

∈ − ∈ −( , ) ( , )
,a b →∞
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Discrete-time signals:

Time: defined only at discrete values of time: t nTTime: defined only at discrete values of time:          ,
Descriptions: sequences of  real or complex 

numbers ,( ) ( )f nT f n=

t nT=

numbers                        , 
Note A.: they take on values in the continuous 

interval           ,

( ) ( )f nT f n

( ) ( , ) ,f n a b for a b∈ − → ∞
Note B.: sampling of analogue signals:

• sampling interval, period: ,   
li t b f l

T
• sampling rate: number of samples per 

second,
• sampling frequency (Hz): 1/Sf T=

6
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Continuous-valued signals:

Time: they are defined for every value of time orTime: they are defined for every value of time or 
only at discrete values of time,

Value: they can take on all possible values onValue: they can take on all possible values on 
finite or infinite range,

Descriptions: functions of a continuous variable 
or sequences of numbers.
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Discrete-valued signals:

Time: they are defined for every value of time orTime: they are defined for every value of time or             
only at discrete values of time,

Value: they can take on values from a finite set of Va ue: ey ca a e o va ues o e se o
possible values,

Descriptions: functions of a continuous variable or 
sequences of numbers.
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Digital filter theory:
Discrete-time signals:

Definition and descriptions: defined only at discrete
l f ti d th t k ll iblvalues of time and they can take all possible 

values on finite or infinite range (sequences of 
real or complex numbers: )( )f n

Di it l i l

real or complex numbers:         ),
Note:  sampling process, constant sampling period.

( )f n

Digital signals:
Definition and descriptions: discrete-time and 

discrete-valued signals (i e discrete -timediscrete valued signals (i.e. discrete time 
signals taking on values from a finite set of 
possible values),
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p )
Note:  sampling, quatizing and coding  process i.e. 

process of analogue-to-digital conversion.



1.1.1.2. Discrete-Time Signal Representations
A. Functional representation:

⎧ ⎧1 1,3
( ) 6 0,7

for n
x n for n

=⎧
⎪= =⎨
⎪

0 0
( ) 0,6 0,1, ,102n

for n
y n for n

<⎧
⎪= =⎨
⎪

K

0 elsewhere⎪
⎩ 1 102n⎪ >⎩

B. Graphical 
representation

( )x n
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C. Tabular representation:

n … -2 -1 0 1 2
( ) 0 12 2 01 1 78 5 23 0 12

D S t ti

x(n) … 0.12 2.01 1.78 5.23 0.12

D. Sequence representation:

{ }( ) 0.12 2.01 1.78 5.23 0.12x n = K K{ }( )
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1 1 1 3 Elementary Discrete-Time Signals1.1.1.3. Elementary Discrete Time Signals

A. Unit sample sequence (unit sample, unit impulse, 
i i l i l)unit impulse signal)

1 0for n =⎧1 0
( )

0 0
for n

n
for n

δ
=⎧

= ⎨ ≠⎩

( )nδ ( )
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B. Unit step signal (unit step, Heaviside step sequence)

1 0for n ≥⎧1 0
( )

0 0
for n

u n
for n

≥⎧
= ⎨ <⎩

( )u n

n
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C. Complex-valued exponential signalp p g
(complex sinusoidal sequence, complex phasor)

[ ] 2 .( ) , ( ) 1, arg ( ) 2 .j nT

S

f nx n e x n x n nT f nT
f

ω πω π= = = = =

where

, , 1R n N j is imaginary unitω∈ ∈ = −, , 1R n N j is imaginary unitω∈ ∈

and
fT is sampling period and        is sampling frequency.Sf
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1 1 2 Discrete Time Systems Definition1.1.2. Discrete-Time Systems. Definition

A discrete-time system is a device or algorithm that 
operates on a discrete-time signal called the input or 
excitation (e.g. x(n)), according to some rule (e.g. H[.]) 
t d th di t ti i l ll d th t tto produce another discrete-time signal called the output
or response (e.g. y(n)).

[ ]( ) ( )y n H x n≡

This expression denotes also the transformation H[.]
(also called operator or mapping) or processing 
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performed by the system on x(n) to produce y(n).



Input-Output Model of Discrete-Time System

(input-output relationship description)

( )x n ( )y ndiscrete-time ( )x n

input signal

( )y n

output signal[ ]H

system
p g

excitation

p g

response
[ ]( ) ( )y n H x n≡

[ ].H

( ) ( )Hx n y n⎯⎯→

[ ]( ) ( )y n H x n≡
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1.1.3. Classification of Discrete-Time 
S tSystems

1.1.3.1. Static vs. Dynamic Systems. Definition 
di i i ll d if iA discrete-time system is called static or memoryless if its output 

at any time instant n depends on the input sample at the same time, 
but not on the past or future samples of the input. In the other case, p p p ,
the system is said to be dynamic or to have memory. 

If the output of a system at time n is completly determined by the 
input samples in the interval from n-N to n (            ), the system is 
said to have memory of duration N.

If h i i l

0N ≥

0NIf             , the system is static or memoryless.

If                    , the system is said to have finite memory.

0N =

0 N< < ∞

17
If                , the system is said to have infinite memory.N →∞



Examples:
Th i ( l )The static (memoryless) systems: 

3( ) ( ) ( )y n nx n bx n= +

The dynamic systems with finite memory:

0
( ) ( ) ( )

N

k
y n h k x n k= −∑

The dynamic system with infinite memory:

0k=

The dynamic system with infinite memory:

( ) ( ) ( )y n h k x n k
∞

= −∑
18

0
( ) ( ) ( )

k
y

=
∑



1.1.3.2. Time-Invariant vs. Time-Variable Systems. 
Definition 

A discrete-time system is called time-invariant if its input-output 
characteristics do not change with time. In the other case, the 
system is called time-variable. 

D fi iti A l d t i ti hift i i t if[ ]HDefinition. A relaxed system           is time- or shift-invariant if 
only if 

[.]H

( ) ( )Hx n y n⎯⎯→[ ]( ) ( )y n H x n≡

implies that 

( ) ( )x n y n⎯⎯→

( ) ( )Hk k

[ ]( ) ( )y n H x n≡

[ ]( ) ( )k H k

for every input signal and every time shift k .

( ) ( )Hx n k y n k− ⎯⎯→ −

( )x n

[ ]( ) ( )y n k H x n k− ≡ −
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Examples:
Th i i iThe time-invariant systems: 

3( ) ( ) ( )y n x n bx n= +

( ) ( ) ( )
N

y n h k x n k= −∑

The time-variable systems:

0k=

The time variable systems: 

3( ) ( ) ( 1)y n nx n bx n= + −

0
( ) ( ) ( )

N
N n

k
y n h k x n k−

=

= −∑
20
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1.1.3.3. Linear vs. Non-linear Systems. Definition 
A discrete-time system is called linear if only if it satisfies the linear 
superposition principle. In the other case, the system is called non-
linearlinear. 

Definition. A relaxed system           is linear if only if[.]H

[ ] [ ] [ ]( ) ( ) ( ) ( )H H H+ +

for any arbitrary input sequences            and           , and any 

[ ] [ ] [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )H a x n a x n a H x n a H x n+ = +

1( )x n 2 ( )x n
arbitrary constants      and     .1a 2a
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Examples:
Th liThe linear systems: 

N

∑ 2

0
( ) ( ) ( )

k
y n h k x n k

=

= −∑ 2( ) ( ) ( )y n x n bx n k= + −

The non-linear systems: 

3( ) ( ) ( 1)y n nx n bx n= + −
0

( ) ( ) ( ) ( 1)
N

k
y n h k x n k x n k

=

= − − +∑
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1.1.3.4. Causal vs. Non-causal Systems. Definition1.1.3.4. Causal vs. Non causal Systems. Definition
Definition. A system is said to be causal if the output of the system 
at any time n (i.e.,  y(n)) depends only on present and past inputs y ( , y( )) p y p p p
(i.e., x(n), x(n-1), x(n-2), … ). In mathematical terms, the output of a 
causal system satisfies an equation of the form

[ ]( ) ( ), ( 1), ( 2),y n F x n x n x n= − − L

where           is some arbitrary function. If a system does not satisfy 
this definition, it is called non-causal.

[.]F
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Examples:
Th lThe causal system: 

N

∑ 2( ) ( ) ( )b k
0

( ) ( ) ( )
k

y n h k x n k
=

= −∑ 2( ) ( ) ( )y n x n bx n k= + −

The non-causal system: 

10
3( ) ( 1) ( 1)y n nx n bx n= + + −

10

10
( ) ( ) ( )

k
y n h k x n k

=−

= −∑
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1 1 3 5 Stable vs Unstable of Systems Definitions1.1.3.5. Stable vs. Unstable of Systems. Definitions 
An arbitrary relaxed system is said to be bounded input - bounded 
output (BIBO) stable if and only if every bounded input producesoutput (BIBO) stable if and only if every bounded input produces 
the bounded output. It means, that there exist some finite numbers 
say         and        , such that xM yM

( ) ( )x yx n M y n M≤ < ∞ ⇒ ≤ < ∞

for all n. If for some bounded input sequence x(n) , the output y(n) 
is unbounded (infinite), the system is classified as unstable. 
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Examples:
Th blThe stable systems: 

N

∑ 2( ) ( ) 3 ( )k
0

( ) ( ) ( )
k

y n h k x n k
=

= −∑ 2( ) ( ) 3 ( )y n x n x n k= + −

The unstable system: 

3( ) 3 ( 1)ny n x n= −
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1.1.3.6. Recursive vs. Non-recursive Systems. 
Definitions 
A system whose output y(n) at time n depends on any number of the 
past outputs values ( e.g. y(n-1), y(n-2), … ), is called a recursive 
system. Then, the output of a causal recursive system can be 
expressed in general as 

[ ]( ) ( 1), ( 2), , ( ), ( ), ( 1), , ( )y n F y n y n y n N x n x n x n M= − − − − −K K

where F[.] is some arbitrary function. In contrast, if  y(n) at time n
depends only on the present and past inputs 

[ ]( ) ( ), ( 1), , ( )y n F x n x n x n M= − −K

27
then such a system is called nonrecursive.



Examples:Examples:
The nonrecursive system: 

0
( ) ( ) ( )

N

k
y n h k x n k= −∑

The recursive system: 

0k=

( ) ( ) ( ) ( ) ( )
N N

y n b k x n k a k y n k= − − −∑ ∑
0 1

( ) ( ) ( ) ( ) ( )
k k

y y
= =
∑ ∑
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1.2. Linear-Discrete Time Time-Invariant
S stems (LTI S stems)Systems (LTI Systems)

1.2.1. Time-Domain Representation
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1.2.1.1 Impulse Response and Convolution

( )δ [ ]( ) ( )h n H nδ=

[ ]H

LTI system

unit impulse

( )nδ [ ]( ) ( )h n H nδ=

impulse response[ ].Hp p p

LTI t d i ti b l ti ( l ti )LTI system description by convolution (convolution sum):

∞ ∞

( ) ( ) ( ) ( ) ( ) ( ) * ( ) ( ) * ( )
k k

y n h k x n k x k h n k h n x n x n h n
=−∞ =−∞

= − = − = =∑ ∑

30
Viewed mathematically, the convolution operation satisfies the 
commutative law.



1.2.1.2. Step Response

( )u n [ ]( ) ( )g n H u n=LTI system

[ ].H
unit step

( )u n
step response

unit step

[ ]( ) ( )g n u nLTI system

[ ] unit-step 
response

n∞

( ) ( ) ( ) ( )
n

k k
g n h k u n k h k

=−∞ =−∞

= − =∑ ∑

These expressions relate the impulse response to the step response 
of the system. 
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1.2.2. Impulse Response Property and
Classification of LTI SystemsClassification of LTI Systems

1.2.2.1. Causal LTI Systems
A relaxed LTI system is causal if and only if its impulse response is 
zero for negative values of n , i.e. 

( ) 0 0h n for n= <

Then, the two equivalent forms of the convolution formula can be 
obtained for the causal LTI system: 

0
( ) ( ) ( ) ( ) ( )

n

k k
y n h k x n k x k h n k

∞

= =−∞

= − = −∑ ∑

32
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1 2 2 2 Stable LTI Systems1.2.2.2. Stable LTI Systems
A LTI system is stable if its impulse response is absolutely 
summable, i.e.summable, i.e. 

2( )h k
∞

< ∞∑
k=−∞
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1.2.2.3. Finite Impulse Response (FIR) LTI Systems 
and Infinite Impulse Response (IIR) LTIand Infinite Impulse Response (IIR) LTI 
Systems

N

Causal FIR LTI systems: 
0

( ) ( ) ( )
N

k
y n h k x n k

=

= −∑

IIR LTI systems: 
0

( ) ( ) ( )
k

y n h k x n k
∞

=

= −∑
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1.2.2.4. Recursive and Nonrecursive LTI Systems

Causal nonrecursive LTI: ( ) ( ) ( )
N

y n h k x n k= −∑

Causal recursive LTI: 

0k=

0 1
( ) ( ) ( ) ( ) ( )

N M

k k
y n b k x n k a k y n k= − − −∑ ∑

LTI systems: 

h i d b ffi i diff i

0 1k k= =

characterized by constant-coefficient difference equations
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1.3. Frequency-Domain Representation of q y p
Discrete Signals and LTI Systems

LTI system( ) j nx n e ω= ( )y n

( )h ncomplex-valued 
exponencial 

LTI system output

signal

impulse response

( ) ( ) ( )
k

y n h k x n k
∞

=−∞

= −∑
36

k= ∞



LTI system output:

( )( ) ( ) ( ) ( ) j n ky n h k x n k h k e ω
∞ ∞

−= − = =∑ ∑

( ) ( )

k k

j k j n j n j kh k e e e h k eω ω ω ω

=−∞ =−∞

∞ ∞
− −= =∑ ∑

k k=−∞ =−∞
∑ ∑

( ) ( )j n jy n e H eω ω=( ) ( )y n e H e

Frequency response: ( ) ( )j j k

k
H e h k eω ω

∞
−

=−∞

= ∑
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( )( ) ( )j j jH e H e eω ω φ ω=( ) ( )

( ) Re ( ) Im ( )j j jH e H e j H eω ω ω⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦( ) ( ) ( )j⎣ ⎦ ⎣ ⎦

( ) ( )cos ( )sinjH e h k k j h k kω ω ω
∞ ∞⎡ ⎤

= + −⎢ ⎥∑ ∑( ) ( )cos ( )sin
k k

H e h k k j h k kω ω
=−∞ =−∞

+ ⎢ ⎥⎣ ⎦
∑ ∑

∞

Re ( ) ( )cosj

k

H e h k kω ω
=−∞

⎡ ⎤ =⎣ ⎦ ∑
∞

Im ( ) ( )sinj

k

H e h k kω ω
∞

=−∞

⎡ ⎤ = −⎣ ⎦ ∑
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Magnitude response: 

2 2
( ) Re ( ) Im ( )j j jH e H e H eω ω ω⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

Phase response:
Im ( )

( ) arg ( )
Re ( )

j
j

j

H e
H e arctg

H e

ω
ω

ω
φ ω

⎡ ⎤⎣ ⎦⎡ ⎤= =⎣ ⎦ ⎡ ⎤⎣ ⎦e ( )e⎡ ⎤⎣ ⎦

Group delay function:

( )( ) d
d
φ ωτ ω
ω

= −

39
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1.3.1. Comments on relationship between the impulse 
response and frequency responsep q y p

The important property of the frequency response

[ ] [ ]2 2j l j lj j k ω π ω π
∞ ∞

+ +∑ ∑

i f h hi f i i i di i h i d 2

[ ] [ ]2 2( ) ( ) ( ) ( )j l j lj j k

k k
H e h k e h k e H eω π ω πω ω − + +−

=−∞ =−∞

= = =∑ ∑

is fact that this function is periodic with period . 2π

( )jH ω
In fact, we may view the previous expression as the exponential 

( )jH e ω

( )jH e ω

Fourier series expansion for                , with h(k) as the Fourier series 
coefficients. Consequently, the unit impulse response h(k) is related 
to                through the integral expression( )

1( ) ( )
2

j j nh n H e e d
π

ω ω ω
π

= ∫

g g p

40
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1.3.2. Comments on symmetry properties

For LTI systems with real-valued impulse response, the magnitude 
response, phase responses, the real component of and the imaginary 
component of possess these symmetry properties:( )jH e ωcomponent of                 possess these symmetry properties:

The real component: even function of      periodic with period  

( )H e

ω 2π

Re ( ) Re ( )j jH e H eω ω−⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

The imaginary component: odd function of        periodic with period ω
2π

⎡ ⎤ ⎡ ⎤Im ( ) Im ( )j jH e H eω ω−⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦
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The magnitude response: even function of      periodic with period ω 2π

( ) ( )j jH e H eω ω−=

The phase response: odd function of       periodic with period ω 2π

arg ( ) arg ( )j jH e H eω ω−⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦
Consequence:

If we known                  and           for                     ,  we can describe 
th f ti ( i l ) f ll l f

( )jH e ω ( )φ ω 0 ω π≤ ≤
( )jH e ω ωthese functions ( i.e. also                 ) for all values of      .( )jH e ω

42



( )jH e ω
Symmetry Properties EVEN

ω
π 2ππ−4π− 3π− 2π− 3π 4π0

( )φ ω ODD

ω
π 2ππ−4π− 3π− 2π− 3π 4π0
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1.3.3. Comments on Fourier Transform of Discrete Signals 
d F D i D i ti f LTI S tand Frequency-Domain Description of LTI Systems

LTI system( ) ( )jx n X e ω ( ) ( )jy n Y e ωLTI system

( )h n( )jH e ω
input signal

( ), ( )jx n X e

output signal

( ), ( )jy n Y e

impulse responsefrequency  response p pq y p
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The input signal x(n) and the spectrum of x(n):

∞ 1 π

∫( ) ( )j j k

k
X e x k eω ω

∞
−

=−∞

= ∑
1( ) ( )

2
j j nx n X e e dω ω

π

ω
π −

= ∫

∞ 1( ) ( )j j nY d
π

ω ω∫

The output signal y(n) and the spectrum of y(n):

( ) ( )j j k

k
Y e y k eω ω−

=−∞

= ∑
1( ) ( )

2
j j ny n Y e e dω ω

π

ω
π −

= ∫

( ) ( )j j kH e h k eω ω
∞

−= ∑ 1( ) ( )j j nh n H e e d
π

ω ω ω= ∫

The impulse response h(n) and the spectrum of h(n): 

( ) ( )
k

H e h k e
=−∞

= ∑ ( ) ( )
2

h n H e e d
π

ω
π −

= ∫
Frequency-domain description of LTI system:

45

Frequency domain description of LTI system:

( ) ( ) ( )j j jY e H e X eω ω ω=



1.3.4. Comments on Normalized Frequency

It is often desirable to express the frequency response of an LTI 
system in terms of units of frequency that involve sampling 
interval T In this case the expressions:interval T. In this case, the expressions: 

( ) ( )j j kH e h k eω ω
∞

−∑ 1( ) ( )j j nh H d
π

ω ω∫( ) ( )j j

k
H e h k e

=−∞

= ∑ ( ) ( )
2

j j nh n H e e dω ω

π

ω
π −

= ∫
are modified to the form:

( ) ( )j T j kT

k
H e h kT eω ω

∞
−= ∑

k=−∞

/

( ) ( )
T

j T j nTTh T H d
π

ω ω∫
46/

( ) ( )
2

j T j nT

T

h nT H e e dω ω

π

ω
π −

= ∫



is periodic with period where is( )j TH e ω 2 / 2T Fπ π= Fis periodic with period                          , where        is 
sampling frequency.

Solution: normalized frequency approach:

( )H e 2 / 2T Fπ π= F

/ 2F π→q y pp

Example:

/ 2 50F kHz= 50kHz π→
3

100F kHz=

p

3

1 3

20 10 2 0.4
50 10 5

x
x

πω π π= = =1 20f kHz=

3

2 3

25 10 0.5
50 10 2

x
x

πω π π= = =2 25f kHz=
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